Tính diện tích tam giác trong không gian Oxyz như nào? Công thức tính diện tích tam giác trong không gian? Lý thuyết cơ bản và các dạng bài tập liên quan đến tính diện tích tam giác trong không gian? Trong phạm vi bài viết dưới đây, hãy cùng pacmanx.com tìm hiểu về cách tính diện tích tam giác trong không gian Oxyz cùng một số nội dung liên quan.

Đang xem: Tính diện tích tam giác trong hệ tọa độ oxyz

Diện tích tam giác trong không gian Oxyz

Công thức tính diện tích tam giác (Delta ABC) trong hệ tọa độ Oxyz là:

(S_{Delta ABC} = frac{1}{2}left | left < vec{AB};vec{AC} ight >
ight |)

*

Bài tập tính diện tích tam giác trong không gian Oxyz

Ví dụ 1: Trong không gian Oxyz cho 3 điểm A(1;2;1), B(2;-1;3), C(5;2;-3). Tính diện tích của tam giác ABC.

Cách giải

Ta có (vec{AB}=(1;-3;3)), (vec{AC}=(4;0;-4))

=> (left < vec{AB},vec{AC} ight > = left ( egin{vmatrix} -3 &3 \ 0 & 4 end{vmatrix};-egin{vmatrix} 1 & 3\ 4 & -4 end{vmatrix};egin{vmatrix} 1 &-3 \ 4 & 0 end{vmatrix}
ight )=(-12;16;-12))

=> Diện tích tam giác ABC là:

(S= frac{1}{2}.left |left < vec{AB},vec{AC} ight >
ight |=frac{1}{2} .sqrt{(-12)^{2}+16^{2}+(-12)^{2}} =sqrt{34})

Ví dụ 2: Cho ba điểm A(1;0;0), B(0;0;1), C(2;1;1).

Xem thêm:

a, Chứng minh rằng A, B, C là một đỉnh của tam giác

b, Tính diện tích tam giác ABC

Cách giải

a, Ta có (vec{AB}=(-1;0;1)); (vec{AC}=(1;1;1))

Suy ra: (left < vec{AB},vec{AC} ight >=left ( egin{vmatrix} 0 & 1\ 1&1 end{vmatrix};egin{vmatrix} 1 &-1 \ 1 & 1 end{vmatrix};egin{vmatrix} -1 &0 \ 1& 1 end{vmatrix}
ight )= (-1;2;-1)
eq vec{0})

Vậy 2 véc tơ (vec{AB}) và (vec{AC}) không cùng phương.

Xem thêm:

Vậy A,B,C là 3 đỉnh của một tam giác

b, Diện tích của tam giác ABC là:

(S_{ABC}=frac{1}{2}left | left < vec{AB};vec{AC} ight >
ight |=frac{1}{2}.sqrt{(-1)^{2}+2^{2}+(-1)^{2}} =frac{sqrt{6}}{2})

Ví dụ 3: Chọn đáp án đúng: trong không gian với hệ tọa độ Oxyz cho ba điểm A(-2;2;1), B(1;0;2), C(-1;2;3). Diện tích tam giác ABC là?

(S_{ABC}= frac{3sqrt{5}}{2})(S_{ABC}= 3sqrt{5})(S_{ABC}= 4sqrt{5})(S_{ABC}= frac{5}{2})

Cách giải

Ta có: (vec{AB}=(3;-2;1)), (vec{AC}=(1;0;2))

=> (left < vec{AB};vec{AC} ight > =(-4;-5;2))

Diện tích tam giác ABC là:

(S_{ABC}= frac{1}{2}.left | left < vec{AB};vec{AC} ight >
ight |= frac{3sqrt{5}}{2})

Vậy đáp án đúng là A.

Trên đây là tổng hợp kiến thức tính diện tích tam giác trong hệ tọa độ Oxyz. Nếu có băn khoăn, thắc mắc về chủ đề tính diện tích tam giác trong hệ tọa độ Oxyz, các bạn để lại bình luận bên dưới chúng mình cùng giải đáp nha. Thấy hay thì chia sẻ nhé >> Chuyên đề các phép biến hình: Lý thuyết và Các dạng bài tập

Leave a Reply

Your email address will not be published. Required fields are marked *